This paper presents GAMMA, a general motion prediction model that enables large-scale real-time simulation and planning for autonomous driving. GAMMA models heterogeneous, interactive traffic agents. They operate under diverse road conditions, with various geometric and kinematic constraints. GAMMA treats the prediction task as constrained optimization in traffic agents' velocity space. The objective is to optimize an agent's driving performance, while obeying all the constraints resulting from the agent's kinematics, collision avoidance with other agents, and the environmental context. Further, GAMMA explicitly conditions the prediction on human behavioral states as parameters of the optimization model, in order to account for versatile human behaviors. We evaluated GAMMA on a set of real-world benchmark datasets. The results show that GAMMA achieves high prediction accuracy on both homogeneous and heterogeneous traffic datasets, with sub-millisecond execution time. Further, the computational efficiency and the flexibility of GAMMA enable (i) simulation of mixed urban traffic at many locations worldwide and (ii) planning for autonomous driving in dense traffic with uncertain driver behaviors, both in real-time. The open-source code of GAMMA is available online.
翻译:本文介绍了使自动驾驶能够进行大规模实时模拟和规划的通用运动预测模型GAMMA(GAMMA)模型、交互式交通代理商(GAMMA)模型,这些模型在不同的道路条件下运作,具有各种几何和运动限制;GAMMA(GAMMA)将预测任务视为交通代理速度空间的有限优化,目的是优化该代理商的驾驶性能,同时满足该代理商运动动力学、避免与其他代理商碰撞以及环境环境环境方面造成的所有限制;此外,GAMMA(GAMA)明确将人类行为状态预测作为优化模型参数的条件,以核算多功能人类行为;我们用一套真实世界基准数据集对GAMMA(GAMA)进行了评估;结果显示,GAMMA(GAM)在单一和混合的交通数据集上都实现了高度的预测准确性;此外,GAM(GAM)的计算效率和灵活性使得(i)全球各地的混合城市交通流量模拟,以及(ii)规划密集交通的自主驾驶,同时实时进行不确定驾驶行为;GAM(GAM)的开放源码是在线的。