In this paper, we propose a novel few-shot learning framework for multi-robot systems that integrate both spatial and temporal elements: Few-Shot Demonstration-Driven Task Coordination and Trajectory Execution (DDACE). Our approach leverages temporal graph networks for learning task-agnostic temporal sequencing and Gaussian Processes for spatial trajectory modeling, ensuring modularity and generalization across various tasks. By decoupling temporal and spatial aspects, DDACE requires only a small number of demonstrations, significantly reducing data requirements compared to traditional learning from demonstration approaches. To validate our proposed framework, we conducted extensive experiments in task environments designed to assess various aspects of multi-robot coordination-such as multi-sequence execution, multi-action dynamics, complex trajectory generation, and heterogeneous configurations. The experimental results demonstrate that our approach successfully achieves task execution under few-shot learning conditions and generalizes effectively across dynamic and diverse settings. This work underscores the potential of modular architectures in enhancing the practicality and scalability of multi-robot systems in real-world applications. Additional materials are available at https://sites.google.com/view/ddace.
翻译:暂无翻译