Sentiment analysis is the computational study of opinions and emotions ex-pressed in text. Deep learning is a model that is currently producing state-of-the-art in various application domains, including sentiment analysis. Many researchers are using a hybrid approach that combines different deep learning models and has been shown to improve model performance. In sentiment analysis, input in text data is first converted into a numerical representation. The standard method used to obtain a text representation is the fine-tuned embedding method. However, this method does not pay attention to each word's context in the sentence. Therefore, the Bidirectional Encoder Representation from Transformer (BERT) model is used to obtain text representations based on the context and position of words in sentences. This research extends the previous hybrid deep learning using BERT representation for Indonesian sentiment analysis. Our simulation shows that the BERT representation improves the accuracies of all hybrid architectures. The BERT-based LSTM-CNN also reaches slightly better accuracies than other BERT-based hybrid architectures.


翻译:感官分析是对文字中观点和情绪的计算研究。深层次学习是一个模型,目前正在不同应用领域产生最新的最新信息,包括情绪分析。许多研究人员正在采用混合方法,将不同的深层次学习模式结合起来,并显示可以改进模型性能。在情绪分析中,文本数据输入首先转换成数字表示法。获取文本代表法的标准方法是精细调整的嵌入方法。但是,这种方法并不注意句子中每个字的上下文。因此,根据句子中文字的背景和位置,使用变换器的双向编码表示法(BERT)模型来获取文字表示法。这项研究扩展了以前使用BERT表示法进行的混合深度学习,用于印度尼西亚情绪分析。我们的模拟表明,BERT代表法改善了所有混合结构的精度。基于BERT的混合结构也比其他混合结构的精度略。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
31+阅读 · 2018年11月13日
Arxiv
21+阅读 · 2018年5月23日
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员