Recent complementary strands of research have shown that leveraging information on the data source through encoding their properties into embeddings can lead to performance increase when training a single model on heterogeneous data sources. However, it remains unclear in which situations these dataset embeddings are most effective, because they are used in a large variety of settings, languages and tasks. Furthermore, it is usually assumed that gold information on the data source is available, and that the test data is from a distribution seen during training. In this work, we compare the effect of dataset embeddings in mono-lingual settings, multi-lingual settings, and with predicted data source label in a zero-shot setting. We evaluate on three morphosyntactic tasks: morphological tagging, lemmatization, and dependency parsing, and use 104 datasets, 66 languages, and two different dataset grouping strategies. Performance increases are highest when the datasets are of the same language, and we know from which distribution the test-instance is drawn. In contrast, for setups where the data is from an unseen distribution, performance increase vanishes.


翻译:最近的补充研究显示,通过将数据源的属性编码成嵌入器来利用数据源的信息,在培训关于多元数据源的单一模型时,可以提高性能。然而,尚不清楚这些数据集嵌入器在哪些情况下最为有效,因为它们用于多种环境、语言和任务。此外,通常假定数据源的金信息是可得的,测试数据来自培训期间的分布。在这项工作中,我们比较了数据集嵌入单语设置、多语言设置和预测数据源标签在零分位设置中的效果。我们评估了三种形态合成任务:形态标记、列位化和依赖性分解,并使用104个数据集、66种语言和两种不同的数据集组合战略。当数据集是同一语言时,性能提高最高,我们知道从中绘制测试源。相比之下,在数据来自无形分布的设置方面,性能增加消失率。

0
下载
关闭预览

相关内容

商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
17+阅读 · 2021年2月15日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员