Deceptive news posts shared in online communities can be detected with NLP models, and much recent research has focused on the development of such models. In this work, we use characteristics of online communities and authors -- the context of how and where content is posted -- to explain the performance of a neural network deception detection model and identify sub-populations who are disproportionately affected by model accuracy or failure. We examine who is posting the content, and where the content is posted to. We find that while author characteristics are better predictors of deceptive content than community characteristics, both characteristics are strongly correlated with model performance. Traditional performance metrics such as F1 score may fail to capture poor model performance on isolated sub-populations such as specific authors, and as such, more nuanced evaluation of deception detection models is critical.


翻译:在线社区共享的欺骗性新闻文章可以通过NLP模式探测出来,最近许多研究都侧重于开发这些模式。在这项工作中,我们使用在线社区和作者的特点 -- -- 如何和在哪里张贴内容的背景 -- -- 来解释神经网络欺骗性检测模型的性能,并查明受模型准确性或失败影响过大的人口群体。我们检查谁在张贴内容,内容张贴到哪里。我们发现作者特征比社区特征更好地预测欺骗性内容,但两者都与模型性能密切相关。F1得分等传统性能衡量标准可能无法捕捉孤立的亚群体,如具体作者的不良模式性能,因此,对欺骗性检测模型进行更细致的评估至关重要。

0
下载
关闭预览

相关内容

注意力机制综述
专知会员服务
203+阅读 · 2021年1月26日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
概率论之概念解析:边缘化(Marginalisation)
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
20+阅读 · 2020年6月8日
Visualizing and Measuring the Geometry of BERT
Arxiv
7+阅读 · 2019年10月28日
VIP会员
相关VIP内容
注意力机制综述
专知会员服务
203+阅读 · 2021年1月26日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
概率论之概念解析:边缘化(Marginalisation)
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员