We introduce the notion of p*-values (p*-variables), which generalizes p-values (p-variables) in several senses. The new notion has four natural interpretations: operational, probabilistic, Bayesian, and frequentist. A main example of a p*-value is a mid p-value, which arises in the presence of discrete test statistics. A unified stochastic representation for p-values, mid p-values, and p*-values is obtained to illustrate the relationship between the three objects. We study several ways of merging arbitrarily dependent or independent p*-values into one p-value or p*-value. Admissible calibrators of p*-values to and from p-values and e-values are obtained with nice mathematical forms, revealing the role of p*-values as a bridge between p-values and e-values. The notion of p*-values becomes useful in many situations even if one is only interested in p-values, mid p-values, or e-values. In particular, deterministic tests based on p*-values can be applied to improve some classic methods for p-values and e-values.


翻译:我们引入了 p* 值( p* 变量) 概念, 将 p- 值( p- 变量) 在某些意义上概括化为 p- 值( p- 变量) 。 新概念有四种自然解释: 操作性、 概率性、 巴伊西亚 和 常态。 p* 值的主要例子是 中值 p- 值, 出现在离散的测试统计数据中。 为 p- 值、 中值和 p* 值提供了统一的随机代表, 以说明三个对象之间的关系。 我们研究将任意依赖性或独立的 p* 值合并成一个 p- 值或 p* 值的几种方法。 p* 值与 p- 值和电子值之间的可允许的校准器, 以好的数学形式从 p- 值和电子值获得, 揭示 p* 值作为 p- 值与 e- 值之间的桥梁的作用。 p* 值的概念在许多情形下变得有用, 即使一个人只对 p- 值、 中值或 e- 值感兴趣。 值 e- value 值可以改进一些基于 典型的确定性 方法的 。

0
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
139+阅读 · 2020年5月19日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员