We motivate and present feature selective anchor-free (FSAF) module, a simple and effective building block for single-shot object detectors. It can be plugged into single-shot detectors with feature pyramid structure. The FSAF module addresses two limitations brought up by the conventional anchor-based detection: 1) heuristic-guided feature selection; 2) overlap-based anchor sampling. The general concept of the FSAF module is online feature selection applied to the training of multi-level anchor-free branches. Specifically, an anchor-free branch is attached to each level of the feature pyramid, allowing box encoding and decoding in the anchor-free manner at an arbitrary level. During training, we dynamically assign each instance to the most suitable feature level. At the time of inference, the FSAF module can work jointly with anchor-based branches by outputting predictions in parallel. We instantiate this concept with simple implementations of anchor-free branches and online feature selection strategy. Experimental results on the COCO detection track show that our FSAF module performs better than anchor-based counterparts while being faster. When working jointly with anchor-based branches, the FSAF module robustly improves the baseline RetinaNet by a large margin under various settings, while introducing nearly free inference overhead. And the resulting best model can achieve a state-of-the-art 44.6% mAP, outperforming all existing single-shot detectors on COCO.


翻译:我们激励并展示有选择性的无锚(FSAF)模块,这是用于单发天体探测器的一个简单而有效的建筑块,可以插入带有特色金字塔结构的单发探测器。FSAF模块处理常规基于锚的检测带来的两个限制:(1) 超光导特性选择;(2) 基于重叠的锚抽样。FSAF模块的一般概念是用于多级无锚分支培训的在线特征选择。具体地说,一个无锚的分支附在地物金字塔的每个级别上,允许在任意级别上以无锚方式对箱进行编码和解码。在培训期间,我们动态地将每个实例分配到最合适的功能级别。在推断时,FSAF模块可以通过平行输出预测与基于锚的分支合作;(2) 基于重叠的定位取样取样器取样器取样器。我们用简单的无锚的分支和在线特性选择战略来快速地介绍这一概念。COCOCO检测轨迹的实验结果显示,我们所有的FSAF模块比基于锚的对应单位表现得更好,而在与基于锚的分支一起工作时,FSAFAFSB模块将每个最合适的设置在最安全的44级服务器之下,然后在最顺利地改进了现有的SDreabreareareabreably 。

1
下载
关闭预览

相关内容

专知会员服务
53+阅读 · 2020年3月16日
专知会员服务
109+阅读 · 2020年3月12日
47.4mAP!最强Anchor-free目标检测网络:SAPD
极市平台
13+阅读 · 2019年12月16日
目标检测中边界框的回归策略
极市平台
17+阅读 · 2019年9月8日
大盘点 | 性能最强的目标检测算法
极市平台
9+阅读 · 2019年7月8日
目标检测:Anchor-Free时代
极市平台
42+阅读 · 2019年4月17日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年4月9日
Scale-Aware Trident Networks for Object Detection
Arxiv
4+阅读 · 2019年1月7日
Arxiv
7+阅读 · 2018年12月5日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
5+阅读 · 2018年4月17日
Arxiv
11+阅读 · 2018年4月8日
Arxiv
8+阅读 · 2018年1月12日
Arxiv
4+阅读 · 2016年12月29日
VIP会员
相关VIP内容
专知会员服务
53+阅读 · 2020年3月16日
专知会员服务
109+阅读 · 2020年3月12日
相关资讯
47.4mAP!最强Anchor-free目标检测网络:SAPD
极市平台
13+阅读 · 2019年12月16日
目标检测中边界框的回归策略
极市平台
17+阅读 · 2019年9月8日
大盘点 | 性能最强的目标检测算法
极市平台
9+阅读 · 2019年7月8日
目标检测:Anchor-Free时代
极市平台
42+阅读 · 2019年4月17日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关论文
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年4月9日
Scale-Aware Trident Networks for Object Detection
Arxiv
4+阅读 · 2019年1月7日
Arxiv
7+阅读 · 2018年12月5日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
5+阅读 · 2018年4月17日
Arxiv
11+阅读 · 2018年4月8日
Arxiv
8+阅读 · 2018年1月12日
Arxiv
4+阅读 · 2016年12月29日
Top
微信扫码咨询专知VIP会员