We introduce a new approach to probabilistic unsupervised learning based on the recognition-parametrised model (RPM): a normalised semi-parametric hypothesis class for joint distributions over observed and latent variables. Under the key assumption that observations are conditionally independent given latents, the RPM combines parametric prior and observation-conditioned latent distributions with non-parametric observation marginals. This approach leads to a flexible learnt recognition model capturing latent dependence between observations, without the need for an explicit, parametric generative model. The RPM admits exact maximum-likelihood learning for discrete latents, even for powerful neural-network-based recognition. We develop effective approximations applicable in the continuous-latent case. Experiments demonstrate the effectiveness of the RPM on high-dimensional data, learning image classification from weak indirect supervision; direct image-level latent Dirichlet allocation; and recognition-parametrised Gaussian process factor analysis (RP-GPFA) applied to multi-factorial spatiotemporal datasets. The RPM provides a powerful framework to discover meaningful latent structure underlying observational data, a function critical to both animal and artificial intelligence.
翻译:我们提出了一种新的基于识别参数化模型(RPM)的概率无监督学习方法:一种联合观测和潜变量分布的归一化半参数假设类。在假设观测在给定潜变量的条件下是相互独立的的关键假设下,RPM将参数先验和观测条件下的潜变量分布与非参数观测边际结合起来。该方法可以获得灵活的学习识别模型,捕捉观测之间的潜在依赖关系,而不需要显式的参数化生成模型。RPM为离散潜变量提供了精确的最大似然学习方法,即使对于基于强大神经网络识别的情况也是如此。我们还开发了适用于连续潜变量情况的有效近似方法。实验表明,RPM在高维数据、学习从弱间接监督中的图像分类、直接的图像级潜在狄利克雷分配以及应用于多因素时空数据集的识别参数化高斯过程因子分析(RP-GPFA)中表现出良好的效果。RPM提供了探索观测数据中具有含义的潜在结构的强大框架,这对于动物和人工智能都是至关重要的。