Using functional magnetic resonance imaging (fMRI) and deep learning to explore functional brain networks (FBNs) has attracted many researchers. However, most of these studies are still based on the temporal correlation between the sources and voxel signals, and lack of researches on the dynamics of brain function. Due to the widespread local correlations in the volumes, FBNs can be generated directly in the spatial domain in a self-supervised manner by using spatial-wise attention (SA), and the resulting FBNs has a higher spatial similarity with templates compared to the classical method. Therefore, we proposed a novel Spatial-Temporal Convolutional Attention (STCA) model to discover the dynamic FBNs by using the sliding windows. To validate the performance of the proposed method, we evaluate the approach on HCP-rest dataset. The results indicate that STCA can be used to discover FBNs in a dynamic way which provide a novel approach to better understand human brain.
翻译:利用功能磁共振成像(fMRI)和深层学习探索功能性脑网络(FBNS)吸引了许多研究人员。然而,这些研究大多仍然基于源和 voxel 信号之间的时间相关性,以及缺乏对大脑功能动态的研究。由于数量中广泛的本地关联性,FBNS可以通过使用空间角度的关注(SA)在空间领域以自我监督的方式直接生成,而由此产生的FBNs与传统方法相比在空间空间空间上与模板的相似性更高。因此,我们建议采用新的空间-时空脉动注意模型(STCA)来利用滑动窗口发现动态FBNs。为了验证拟议方法的性能,我们评估了HCP-rest数据集的性能。结果显示,SCCA可以用动态方式发现FBNS,从而提供一种新的方法来更好地了解人类大脑。