In the era of Internet of Things (IoT), network-wide anomaly detection is a crucial part of monitoring IoT networks due to the inherent security vulnerabilities of most IoT devices. Principal Components Analysis (PCA) has been proposed to separate network traffics into two disjoint subspaces corresponding to normal and malicious behaviors for anomaly detection. However, the privacy concerns and limitations of devices' computing resources compromise the practical effectiveness of PCA. We propose a federated PCA-based Grassmannian optimization framework that coordinates IoT devices to aggregate a joint profile of normal network behaviors for anomaly detection. First, we introduce a privacy-preserving federated PCA framework to simultaneously capture the profile of various IoT devices' traffic. Then, we investigate the alternating direction method of multipliers gradient-based learning on the Grassmann manifold to guarantee fast training and the absence of detecting latency using limited computational resources. Empirical results on the NSL-KDD dataset demonstrate that our method outperforms baseline approaches. Finally, we show that the Grassmann manifold algorithm is highly adapted for IoT anomaly detection, which permits drastically reducing the analysis time of the system. To the best of our knowledge, this is the first federated PCA algorithm for anomaly detection meeting the requirements of IoT networks.
翻译:在物联网时代,由于大多数IoT装置固有的安全脆弱性,整个网络异常现象探测是监测IoT网络的一个关键部分。主要部件分析(PCA)建议将网络流量分为两个互不相连的子空间,与正常和恶意行为相对应,以便发现异常现象。然而,对装置计算资源的隐私关切和限制损害了常设仲裁法院的实际效力。我们提议了一个以五氯苯甲醚为基础的格拉斯曼优化框架,以协调IoT装置,将正常网络行为的联合概况汇总起来,以便发现异常现象。首先,我们引入一个隐私保护的五氯苯联合框架,以同时捕捉各种IoT装置的交通特征。然后,我们调查格拉斯曼系统基于增倍梯度学习的交替方向方法,以保证快速培训,而且没有利用有限的计算资源探测拉长。NSL-KDD数据集的精密结果表明,我们的方法不符合基准方法。最后,我们表明,格拉斯曼的多重算算法非常适合IoT异常现象探测,从而大大减少对该系统的实时测算系统进行实时分析。