As a core technology of Intelligent Transportation System, traffic flow prediction has a wide range of applications. The fundamental challenge in traffic flow prediction is to effectively model the complex spatial-temporal dependencies in traffic data. Spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem. However, GNN-based models have three major limitations for traffic prediction: i) Most methods model spatial dependencies in a static manner, which limits the ability to learn dynamic urban traffic patterns; ii) Most methods only consider short-range spatial information and are unable to capture long-range spatial dependencies; iii) These methods ignore the fact that the propagation of traffic conditions between locations has a time delay in traffic systems. To this end, we propose a novel Propagation Delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction. Specifically, we design a spatial self-attention module to capture the dynamic spatial dependencies. Then, two graph masking matrices are introduced to highlight spatial dependencies from short- and long-range views. Moreover, a traffic delay-aware feature transformation module is proposed to empower PDFormer with the capability of explicitly modeling the time delay of spatial information propagation. Extensive experimental results on six real-world public traffic datasets show that our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency. Moreover, we visualize the learned spatial-temporal attention map to make our model highly interpretable.
翻译:作为智能运输系统的核心技术,交通流量预测具有广泛的应用。交通流量预测的根本挑战在于有效模拟交通数据中复杂的空间-时际依赖性。空间-时表神经网络模型(GNNN)已成为解决这一问题最有希望的方法之一。然而,基于GNNN的模型对交通预测有三大限制:(1) 多数方法以静态方式模拟空间依赖性,限制了学习动态城市交通模式的能力;(2) 大多数方法只考虑短距离空间信息,无法捕捉远程空间依赖性;(3) 这些方法忽略了这样一个事实,即不同地点之间交通条件的传播在交通系统中有时间延迟。为此,我们提议采用新的促进延迟动态长距离的远程变换模式,即PDDFormer,用于准确的交通流量预测。具体地说,我们设计了一个空间自备模式模块,以捕捉动态城市交通依赖性;(2) 多数方法只考虑短距离空间信息,无法捕捉到远程空间依赖性空间依赖性;(3) 这些方法忽略了一个事实,即各地点之间传播空间依赖性空间依赖性空间空间空间信息的条件;(3) 这些方法忽略了一个事实,即我们所拟议的直径可理解的变的流数据格式,我们所拟的变的变的变的变的变的移动模式是移动模式,而我们所变的变的变的变的变的变的变的变的图像模式,我们所变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的模型,即变的变的变的变换模式是显示式方法,我们的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变式方法是的变的变的变的变的变的变的变的变式方法是的变的变的变的变的变式的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变式的变的变的变式方法是的变换的变式的变式的变式的变式的变式的变式的变式的变