The behavior of predictive algorithms built on data generated by a prejudiced human decision-maker is a prominent concern in the sphere of algorithmic bias. We consider the setting of a statistical and taste-based discriminator screening members of a disadvantaged group. We suppose one of two algorithms are used to score individuals: the algorithm $s_1$ favors disadvantaged individuals while the algorithm $s_2$ exemplifies the group-based prejudice in the training data set. Abstracting away from the estimation problem, we instead evaluate which of the two algorithms the discriminator prefers by using a version of regret loss generated by an algorithm. We define the notion of a regular and irregular environment and give theoretical guarantees on the firm's preferences in either case. Our main result shows that in a regular environment, greater levels of prejudice lead firms to prefer $s_2$ over $s_1$ on average. In particular, we prove the almost sure existence of a unique level of prejudice where a firm prefers $s_2$ over $s_1$ for any greater level of prejudice. Conversely, in irregular environments, the firm prefers $s_2$ for all $\tau$ almost surely.
翻译:以偏见的人类决策者所产生数据为基础的预测算法行为是算法偏差领域的一个突出关切。我们考虑设置一个基于统计和品味的差别分析器来筛选处境不利群体的成员。我们假设两种算法中的一种被用来评分个人:算法$_1美元有利于处境不利的个人,而算法$_2美元则代表了培训数据集中基于集团的偏见。从估算问题总结出来,我们取而代之的是,我们用一种算法产生的遗憾损失的版本来评估歧视者喜欢哪两种算法。我们界定了正常和不正常环境的概念,并在任何一种情况下对企业的偏好给予理论上的保证。我们的主要结果显示,在一种正常环境中,更大的偏见水平导致企业偏向于2美元以上的平均1美元。特别是,我们证明,如果一个公司偏爱2美元以上1美元的任何更大程度的偏见,几乎肯定存在一种独特的损害程度。相反,在非正常环境中,公司偏爱$_2美元或2美元。