Policymakers often require information on programs' long-term impacts that is not available when decisions are made. We demonstrate how data fusion methods may be used address the problem of missing final outcomes and predict long-run impacts of interventions before the requisite data are available. We implement this method by concatenating data on an intervention with auxiliary long-term data and then imputing missing long-term outcomes using short-term surrogate outcomes while approximating uncertainty with replication methods. We use simulations to examine the performance of the methodology and apply the method in a case study. Specifically, we fuse data on the Oregon Health Insurance Experiment with data from the National Longitudinal Mortality Study and estimate that being eligible to apply for subsidized health insurance will lead to a statistically significant improvement in long-term mortality.
翻译:决策者往往需要关于方案长期影响的信息,而这种信息在作出决定时是无法获得的。我们展示了如何使用数据聚合方法来解决最终结果缺失的问题,并在获得必要数据之前预测干预措施的长期影响。我们采用这种方法,方法是利用辅助长期数据将干预数据与辅助性长期数据相结合,然后利用短期替代结果估算缺失的长期结果,同时利用复制方法来接近不确定性。我们利用模拟来审查方法的绩效,并在案例研究中采用这种方法。具体地说,我们将俄勒冈健康保险实验的数据与《国家纵向死亡率研究》的数据相结合,并估计有资格申请补贴健康保险将会导致长期死亡率在统计上显著改善。