Federated recommendation addresses the data silo and privacy problems altogether for recommender systems. Current federated recommender systems mainly utilize cryptographic or obfuscation methods to protect the original ratings from leakage. However, the former comes with extra communication and computation costs, and the latter damages model accuracy. Neither of them could simultaneously satisfy the real-time feedback and accurate personalization requirements of recommender systems. In this paper, we proposed federated masked matrix factorization (FedMMF) to protect the data privacy in federated recommender systems without sacrificing efficiency and effectiveness. In more details, we introduce the new idea of personalized mask generated only from local data and apply it in FedMMF. On the one hand, personalized mask offers protection for participants' private data without effectiveness loss. On the other hand, combined with the adaptive secure aggregation protocol, personalized mask could further improve efficiency. Theoretically, we provide security analysis for personalized mask. Empirically, we also show the superiority of the designed model on different real-world data sets.
翻译:联邦建议针对的是建议系统的数据分类和隐私问题。目前联邦建议系统主要使用加密或模糊的方法来保护原始评级,防止泄漏。但是,前者涉及额外的通信和计算费用,而后者的损害模型准确性。两者都无法同时满足建议系统的实时反馈和准确个人化要求。在本文件中,我们提议采用联合的蒙面矩阵因子化(FedmMMF)来保护配对建议系统的数据隐私,同时不牺牲效率和有效性。更详细地说,我们引入了仅从当地数据产生的个性化遮罩的新概念,并将其应用到FedMMF。一方面,个性化遮罩为参与者的私人数据提供了保护,而不会丧失有效性。另一方面,与适应性安全集成协议相结合,个性化面具可以进一步提高效率。理论上,我们为个性化遮罩提供安全分析。我们同时在不同的现实世界数据集上也展示了设计模型的优越性。