Inspired by the developments in quantum computing, building domain-specific classical hardware to solve computationally hard problems has received increasing attention. Here, by introducing systematic sparsification techniques, we demonstrate a massively parallel architecture: the sparse Ising Machine (sIM). Exploiting sparsity, sIM achieves ideal parallelism: its key figure of merit - flips per second - scales linearly with the number of probabilistic bits (p-bit) in the system. This makes sIM up to 6 orders of magnitude faster than a CPU implementing standard Gibbs sampling. Compared to optimized implementations in TPUs and GPUs, sIM delivers 5-18x speedup in sampling. In benchmark problems such as integer factorization, sIM can reliably factor semiprimes up to 32-bits, far larger than previous attempts from D-Wave and other probabilistic solvers. Strikingly, sIM beats competition-winning SAT solvers (by 4-700x in runtime to reach 95% accuracy) in solving 3SAT problems. Even when sampling is made inexact using faster clocks, sIM can find the correct ground state with further speedup. The problem encoding and sparsification techniques we introduce can be applied to other Ising Machines (classical and quantum) and the architecture we present can be used for scaling the demonstrated 5,000-10,000 p-bits to 1,000,000 or more through analog CMOS or nanodevices.
翻译:在量子计算的发展启发下,人们日益关注建立特定域的古典硬件以解决计算困难问题。在这里,我们通过采用系统的封闭技术,展示了大规模平行结构:稀疏的 Ising 机器(sIM) 。 探索的夸度,SIM 实现了理想平行主义: 其关键优点数字 - 翻翻每秒 - 以系统中概率比特(p-bit)的数量为线性尺度。这使得SIM 最多达到6个数量级,比CPU执行标准Gb抽样要快到6个数量级。 与优化的TPU和GPU的安装相比,SIM 在取样中提供5-18x加速。 在诸如整数因数化等基准问题中,SIM可以可靠地将半质因子增到32位,远大于D-Wave和其他概率溶剂的尝试。 SIM 在解决3SAT问题时,SIM比竞争得分数的SAT溶剂(在运行时为4-700x,或达到95%的精度)。 与优化的操作方法相比,SIM 交付了5-1810000在取样中完成3SAT问题。在使用更快的取样中进行取样时,SIM 可以纠正目前使用的SIM 和SIM 和升级结构。