New and existing methods for generating, and especially detecting, deepfakes are investigated and compared on the simple problem of authenticating coin flip data. Importantly, an alternative approach to deepfake generation and detection, which uses a Markov Observation Model (MOM) is introduced and compared on detection ability to the traditional Generative Adversarial Network (GAN) approach as well as Support Vector Machine (SVM), Branching Particle Filtering (BPF) and human alternatives. MOM was also compared on generative and discrimination ability to GAN, filtering and humans (as SVM does not have generative ability). Humans are shown to perform the worst, followed in order by GAN, SVM, BPF and MOM, which was the best at the detection of deepfakes. Unsurprisingly, the order was maintained on the generation problem with removal of SVM as it does not have generation ability.
翻译:暂无翻译