In Fluorescein Angiography (FA), an exogenous dye is injected in the bloodstream to image the vascular structure of the retina. The injected dye can cause adverse reactions such as nausea, vomiting, anaphylactic shock, and even death. In contrast, color fundus imaging is a non-invasive technique used for photographing the retina but does not have sufficient fidelity for capturing its vascular structure. The only non-invasive method for capturing retinal vasculature is optical coherence tomography-angiography (OCTA). However, OCTA equipment is quite expensive, and stable imaging is limited to small areas on the retina. In this paper, we propose a novel conditional generative adversarial network (GAN) capable of simultaneously synthesizing FA images from fundus photographs while predicting retinal degeneration. The proposed system has the benefit of addressing the problem of imaging retinal vasculature in a non-invasive manner as well as predicting the existence of retinal abnormalities. We use a semi-supervised approach to train our GAN using multiple weighted losses on different modalities of data. Our experiments validate that the proposed architecture exceeds recent state-of-the-art generative networks for fundus-to-angiography synthesis. Moreover, our vision transformer-based discriminators generalize quite well on out-of-distribution data sets for retinal disease prediction.


翻译:在Fluorescein Angigraph(FA)中,在血液中注入了一种外生染色,以映像视网膜的血管结构。注入的染色可以造成不良反应,如恶心、呕吐、厌食性冲击,甚至死亡。相比之下,彩色基成像是一种非侵入性技术,用于拍摄视网膜,但没有足够的忠诚性来捕捉其血管结构。捕捉视网膜血管结构的唯一非侵入性方法是光学一致性的成像-血管结构(OCTA)。然而,OCTA设备非常昂贵,稳定的成像仅限于视网上的小区域。在本文件中,我们提议建立一个新型的有条件的基因对抗网络(GAN),能够在预测视网变异时同时对FA图像进行合成。拟议系统的好处是以非侵入性的方式处理成像视网内血管血管血管血管血管血管动动的问题,以及预测视网外变异现象的存在。我们用半超超前的变异性变异性结构方法来训练我们GAN的变异基因系统。我们最新的变现式模型模型模型模型模型模型模型,用来训练我们最新的变异性变现数据。我们最近的变现模型模型模型的模型的模型,用来模拟变现数据。

0
下载
关闭预览

相关内容

专知会员服务
59+阅读 · 2020年3月19日
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Semantic Image Alignment for Vehicle Localization
Arxiv
0+阅读 · 2021年10月8日
Arxiv
19+阅读 · 2021年4月8日
Revisiting CycleGAN for semi-supervised segmentation
Arxiv
3+阅读 · 2019年8月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员