We present SegGPT, a generalist model for segmenting everything in context. We unify various segmentation tasks into a generalist in-context learning framework that accommodates different kinds of segmentation data by transforming them into the same format of images. The training of SegGPT is formulated as an in-context coloring problem with random color mapping for each data sample. The objective is to accomplish diverse tasks according to the context, rather than relying on specific colors. After training, SegGPT can perform arbitrary segmentation tasks in images or videos via in-context inference, such as object instance, stuff, part, contour, and text. SegGPT is evaluated on a broad range of tasks, including few-shot semantic segmentation, video object segmentation, semantic segmentation, and panoptic segmentation. Our results show strong capabilities in segmenting in-domain and out-of-domain targets, either qualitatively or quantitatively.


翻译:我们提出了SegGPT,一种用于上下文中全面分割的通用模型。我们将各种分割任务统一成一个一般的上下文学习框架,通过将它们转换为图像的相同格式,以适应不同类型的分割数据。 SegGPT的训练被定义为一个在上下文着色问题下的训练过程,对于每个数据样本都有随机颜色映射。目标是根据上下文实现多样化的任务,而不是依赖特定的颜色。训练后,SegGPT可以通过上下文推理在图像或视频中执行任意分割任务,如物体实例、物品、部分、轮廓和文本。SegGPT在各种任务上进行了评估,包括少样本语义分割、视频目标分割、语义分割和全景分割。我们的结果表明,在域内和域外目标的分割能力方面,无论是定性还是定量,SegGPT都具有很强的能力。

1
下载
关闭预览

相关内容

【CVPR 2022】视觉提示调整(VPT),Vision Prompt Tuning
专知会员服务
30+阅读 · 2022年3月12日
专知会员服务
85+阅读 · 2021年1月7日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2023年5月22日
Arxiv
14+阅读 · 2022年5月6日
VIP会员
相关VIP内容
【CVPR 2022】视觉提示调整(VPT),Vision Prompt Tuning
专知会员服务
30+阅读 · 2022年3月12日
专知会员服务
85+阅读 · 2021年1月7日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员