项目名称: 面向移动机器人语义对象的协同感知注意机制及分割方法研究
项目编号: No.61305118
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 自动化技术、计算机技术
项目作者: 陈国栋
作者单位: 苏州大学
项目金额: 25万元
中文摘要: 高层语义与底层视觉之间的"语义鸿沟"是制约移动机器人环境感知与智能认知的瓶颈。而人类视觉系统在识别语义对象过程中具有注意区域显著并受上下文影响的特点,这对复杂场景移动机器人语义对象分割具有重要借鉴意义。受视觉认知机理启发,本项目提出面向移动平台语义对象的协同感知注意新原理和分割新方法。首先,在分析移动平台语义对象分割特点的基础上,采用数学分析方法描述上下文对语义对象分割的影响机制,建立其数学模型;其次,研究适合移动平台语义对象分割的不变特征描述方法;然后,建立语义引导的协同感知注意模型:将不变特征、高层语义与注意模型融合,再协同上下文信息;最后,搭建实验平台,验证移动机器人协同上下文信息的注意模型进行语义对象分割的优越性。本项目提出以数学建模方式定量探讨上下文信息对语义对象分割的影响,将其与不变特征融合的注意模型协同,为自主移动机器人环境感知与认知提供理论依据,具有重要的学术和现实意义。
中文关键词: 机器人;仿生视觉;形状特征;信息融合;视觉注意
英文摘要: The problem of "semantic gap" between the high level semantic concept and low level perception is one of the bottlenecks of the development of mobile robot environment perception and intelligent cognition. The active visual attention and the semantic context influence are the significant characters shown by the human being vision system when recognizing the semantic object. It is worth to use the characters of the human being vision system for reference. Espied by the cognitive vision mechanism, the novel synergetic perception visual attention mechanism and segmentation method are proposed. Firstly, after analyzing the characters of the mobile robot semantic object segmentation, the mathematic effect model is built which reflects the mechanism of the context effect to object segmentation. Secondly, the invariant features describe method which suitable for the mobile robot semantic object segmentation is proposed. Then, the semantic guided synergetic perception visual attention model is built: fuse the invariant feature, high-level semantics and visual attention model, then collaborative the context information. Lastly, the experimental platform is built, which is used for the verification of the superiority of proposed semantic object segmentation method. This project quantitatively investigate the context infor
英文关键词: robot;bionic vision;shape information;information fusion;visual attention