Spiking neural networks (SNNs) are well known as the brain-inspired models with high computing efficiency, due to a key component that they utilize spikes as information units, close to the biological neural systems. Although spiking based models are energy efficient by taking advantage of discrete spike signals, their performance is limited by current network structures and their training methods. As discrete signals, typical SNNs cannot apply the gradient descent rules directly into parameters adjustment as artificial neural networks (ANNs). Aiming at this limitation, here we propose a novel method of constructing deep SNN models with knowledge distillation (KD) that uses ANN as teacher model and SNN as student model. Through ANN-SNN joint training algorithm, the student SNN model can learn rich feature information from the teacher ANN model through the KD method, yet it avoids training SNN from scratch when communicating with non-differentiable spikes. Our method can not only build a more efficient deep spiking structure feasibly and reasonably, but use few time steps to train whole model compared to direct training or ANN to SNN methods. More importantly, it has a superb ability of noise immunity for various types of artificial noises and natural signals. The proposed novel method provides efficient ways to improve the performance of SNN through constructing deeper structures in a high-throughput fashion, with potential usage for light and efficient brain-inspired computing of practical scenarios.


翻译:脉冲神经网络(SNNs)作为一种仿生学习模型,具有高效的计算性能,这得益于SNNs的关键组成部分:使用脉冲作为信息单元,这与生物神经系统非常接近。虽然基于脉冲的模型通过利用离散脉冲信号具有节能高效的特点,但它们的性能受限于当前的网络结构和训练方法。由于典型的SNNs不能直接将梯度下降规则直接应用于参数调整,因此我们提出了一种新颖的构建深度脉冲神经网络的知识蒸馏方法,即使用人工神经网络ANN作为教师模型和SNNs作为学生模型。通过ANN-SNN联合训练算法,学生SNNs模型可以通过知识蒸馏方法从教师ANNs模型中学习到丰富的特征信息,而避免了直接在非可微脉冲中进行SNN的训练。相较于直接训练或采用ANN到SNNs的方法,我们的方法可以更有效地构建深度脉冲结构,但只用较少的时间步长来训练整个模型。更重要的是,它具有对各种人造噪声和自然信号噪声的出色噪声免疫能力。该提出的新方法提供了通过以高吞吐量的方式构建更高效的深度脉冲模型的有效方法,并具有在实际场景中使用的轻便高效的大脑启发式计算的潜力。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
[ICML-Google]先宽后窄:对深度薄网络的有效训练
专知会员服务
33+阅读 · 2020年7月5日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
胶囊网络(Capsule Network)在文本分类中的探索
PaperWeekly
13+阅读 · 2018年4月5日
前沿 | 简述脉冲神经网络SNN:下一代神经网络
机器之心
36+阅读 · 2018年1月13日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
0+阅读 · 2023年5月29日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
[ICML-Google]先宽后窄:对深度薄网络的有效训练
专知会员服务
33+阅读 · 2020年7月5日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
胶囊网络(Capsule Network)在文本分类中的探索
PaperWeekly
13+阅读 · 2018年4月5日
前沿 | 简述脉冲神经网络SNN:下一代神经网络
机器之心
36+阅读 · 2018年1月13日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员