We propose improved exact and heuristic algorithms for solving the maximum weight clique problem, a well-known problem in graph theory with many applications. Our algorithms interleave successful techniques from related work with novel data reduction rules that use local graph structure to identify and remove vertices and edges while retaining the optimal solution. We evaluate our algorithms on a range of synthetic and real-world graphs, and find that they outperform the current state of the art on most inputs. Our data reductions always produce smaller reduced graphs than existing data reductions alone. As a result, our exact algorithm, MWCRedu, finds solutions orders of magnitude faster on naturally weighted, medium-sized map labeling graphs and random hyperbolic graphs. Our heuristic algorithm, MWCPeel, outperforms its competitors on these instances, but is slightly less effective on extremely dense or large instances.
翻译:我们建议改进精确和超自然算法,以解决最大重量分类问题,这是图表理论中许多应用中众所周知的一个问题。我们的算法将成功技术与使用本地图形结构来识别和去除脊椎和边缘并同时保留最佳解决办法的新数据减少规则的相关工作相隔开来。我们在一系列合成和现实世界的图表上评估我们的算法,发现这些算法在大多数投入上优于目前的最新水平。我们的数据减少总是产生比现有数据减少的更少的图表。因此,我们精确的算法MWCREdu在自然加权、中等规模的地图标签图和随机超偏执图上找到更快的答案。我们的超自然结构算法、MWCPeel在这些情况下比其竞争者要强,但在极为密集或大的情况下效果要小一些。