In the Colored Clustering problem, one is asked to cluster edge-colored (hyper-)graphs whose colors represent interaction types. More specifically, the goal is to select as many edges as possible without choosing two edges that share an endpoint and are colored differently. Equivalently, the goal can also be described as assigning colors to the vertices in a way that fits the edge-coloring as well as possible. As this problem is NP-hard, we build on previous work by studying its parameterized complexity. We give a $2^{\mathcal O(k)} \cdot n^{\mathcal O(1)}$-time algorithm where $k$ is the number of edges to be selected and $n$ the number of vertices. We also prove the existence of a problem kernel of size $\mathcal O(k^{5/2} )$, resolving an open problem posed in the literature. We consider parameters that are smaller than $k$, the number of edges to be selected, and $r$, the number of edges that can be deleted. Such smaller parameters are obtained by considering the difference between $k$ or $r$ and some lower bound on these values. We give both algorithms and lower bounds for Colored Clustering with such parameterizations. Finally, we settle the parameterized complexity of Colored Clustering with respect to structural graph parameters by showing that it is $W[1]$-hard with respect to both vertex cover number and tree-cut width, but fixed-parameter tractable with respect to slim tree-cut width.


翻译:在彩色群集问题中, 需要将颜色代表互动类型 。 更具体地说, 目标是选择尽可能多的边缘, 而不选择两个端点相同且颜色不同的边点。 同样, 目标也可以被描述为向顶点分配颜色, 与边色和可能的边色相匹配。 由于这个问题是 NP- 硬的, 我们通过研究其参数化的复杂度, 以先前的工作为基础。 我们给出一个 $mathcal O( k)}\ cdot n ⁇ macal O(1)} $- 时间算法, 其中, $k$ 是要选择的边点数, 和 $n 的边值不同 。 我们还可以证明一个大小为 $\ mathcal O( k) 5/2} 的问题内核, 解决文献中出现的一个未解决的问题。 我们考虑的参数小于 $k$, 所要选择的边点数, 而不是 $r$ 。 以 美元 的边值表示颜色 的底值, 这样的底值和 标值之间会通过我们所选的颜色变的颜色 。 。 。 这样的底值会显示的底值 。 。 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月24日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
31+阅读 · 2020年9月21日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员