We propose a controllable style transfer framework based on Implicit Neural Representation (INR) that pixel-wisely controls the stylized output via test-time training. Unlike traditional image optimization methods that often suffer from unstable convergence and learning-based methods that require intensive training and have limited generalization ability, we present a model optimization framework that optimizes the neural networks during test-time with explicit loss functions for style transfer. After being test-time trained once, thanks to the flexibility of the INR-based model,our framework can precisely control the stylized images in a pixel-wise manner and freely adjust image resolution without further optimization or training.
翻译:我们提出了一个基于隐性神经代表(INR)的可控风格传输框架,该框架通过测试时间培训来控制Styliz化输出。 与传统图像优化方法不同,传统图像优化方法往往存在不稳定的趋同和学习方法,这些方法需要密集培训,一般化能力也有限。 我们提出了一个模型优化框架,在测试时间优化神经网络,在测试时间中明显损失功能以进行样式转换。 在经过一次测试时间培训后,由于基于IRI的模型具有灵活性,我们的框架可以精确地以像素方法控制Stylized图像,并在不进一步优化或培训的情况下自由调整图像分辨率。