Unsupervised domain adaptation (UDA) is to learn classification models that make predictions for unlabeled data on a target domain, given labeled data on a source domain whose distribution diverges from the target one. Mainstream UDA methods strive to learn domain-aligned features such that classifiers trained on the source features can be readily applied to the target ones. Although impressive results have been achieved, these methods have a potential risk of damaging the intrinsic data structures of target discrimination, raising an issue of generalization particularly for UDA tasks in an inductive setting. To address this issue, we are motivated by a UDA assumption of structural similarity across domains, and propose to directly uncover the intrinsic target discrimination via constrained clustering, where we constrain the clustering solutions using structural source regularization that hinges on the very same assumption. Technically, we propose a hybrid model of Structurally Regularized Deep Clustering, which integrates the regularized discriminative clustering of target data with a generative one, and we thus term our method as H-SRDC. Our hybrid model is based on a deep clustering framework that minimizes the Kullback-Leibler divergence between the distribution of network prediction and an auxiliary one, where we impose structural regularization by learning domain-shared classifier and cluster centroids. By enriching the structural similarity assumption, we are able to extend H-SRDC for a pixel-level UDA task of semantic segmentation. We conduct extensive experiments on seven UDA benchmarks of image classification and semantic segmentation. With no explicit feature alignment, our proposed H-SRDC outperforms all the existing methods under both the inductive and transductive settings. We make our implementation codes publicly available at https://github.com/huitangtang/H-SRDC.


翻译:不受监督的域适应(UDA)是学习分类模型,对目标域的未贴标签数据作出预测,根据来源域的标签数据,对目标域的未贴标签数据作出预测,而源域的分布与目标域的分布不同。主流UDA方法努力学习与域一致的特性,使接受过源特性培训的分类人员能够很容易地适用于目标域。虽然取得了令人印象深刻的成果,但这些方法具有破坏目标歧视内在数据结构的潜在风险,在感化环境中特别对UDA任务提出了普遍化的问题。为了解决这个问题,我们受到UDA对各域结构相似性的假设的动机,我们提议通过限制组群群直接发现内在目标差异。主流UDA,我们用结构源规范来限制集群解决方案的分类方法,从而可以将目标数据的结构性正规化的深层分类集成一个混合模型,将目标数据的常规化的集成集成与感光谱,因此,我们将我们的拟议方法称为H-SRDC。我们的广泛混合模型基于一个深度的集成框架框架,以尽量减少KRack-Lebel-Le-Leber 图像级的分类介介介介介介点差异差异差异差异,我们通过网络的分布的流流流流流化变化的网络化的模型进行结构化的模型化的系统化的模型,从而可以进行网络化的系统化的系统化的模型的模型的模型的系统化的模型的模型的模型的模型的模型的模型,通过对网络化的模型进行结构化的分布化的模型,进行结构序式的流化的分布化的分布化的分布化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的模型,从而的流成的流成的流成的流成的流成的流成的流成的流成的流成成的流成的流成的流成的流成的流成的流成的流成的流成的流成的流成的流成的流成的流成的流成的流成的流成的流成的流成的流成的流成的

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
180+阅读 · 2020年2月1日
【论文】结构GANs,Structured GANs,
专知会员服务
15+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员