To treat others as one would wish to be treated is a common formulation of the golden rule (GR). Yet, despite its prevalence as an axiom throughout history, no transfer of this moral philosophy into computational systems exists. In this paper we consider how to algorithmically operationalise this rule so that it may be used to measure sentences such as the boy harmed the girl, and categorise them as fair or unfair. For the purposes of the paper, we define a fair act as one that one would be accepting of if it were done to oneself. A review and reply to criticisms of the GR is made. We share the code for the digitisation of the GR, and test it with a list of sentences. Implementing it within two language models, the USE, and ALBERT, we find F1 scores of 78.0, 85.0, respectively. A suggestion of how the technology may be implemented to avoid unfair biases in word embeddings is made - given that individuals would typically not wish to be on the receiving end of an unfair act, such as racism, irrespective of whether the corpus being used deems such discrimination as praiseworthy.


翻译:将他人视为希望被对待的人,是黄金规则(GR)的共同表述。然而,尽管这一道德哲学在整个历史中普遍存在,但这一道德哲学并没有转移到计算系统之中。在本文件中,我们考虑如何从逻辑上操作这一规则,以便用它来衡量诸如男孩伤害女孩等判决,并将之归类为公平或不公平。为本文件的目的,我们将公平行为定义为如果对自己做出这种行为,人们会接受的公平行为。审查和答复对GR的批评。我们同意将GR数字化的守则,并用一个判决清单来测试它。在两种语言模式,即USE和ALBERT中执行这一规则,我们分别发现F1分78.0、85.0分,我们发现F1分,技术如何应用以避免文字嵌入中的不公平偏见――因为个人通常不希望接受不公平行为,例如种族主义,而不管使用的物质是否认为这种歧视是值得称道的。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
115+阅读 · 2019年12月24日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
59+阅读 · 2019年8月26日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Arxiv
8+阅读 · 2021年5月21日
Arxiv
6+阅读 · 2018年12月10日
VIP会员
相关VIP内容
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Top
微信扫码咨询专知VIP会员