Addressing the problem of fairness is crucial to safely use machine learning algorithms to support decisions with a critical impact on people's lives such as job hiring, child maltreatment, disease diagnosis, loan granting, etc. Several notions of fairness have been defined and examined in the past decade, such as statistical parity and equalized odds. The most recent fairness notions, however, are causal-based and reflect the now widely accepted idea that using causality is necessary to appropriately address the problem of fairness. This paper examines an exhaustive list of causal-based fairness notions and study their applicability in real-world scenarios. As the majority of causal-based fairness notions are defined in terms of non-observable quantities (e.g., interventions and counterfactuals), their deployment in practice requires to compute or estimate those quantities using observational data. This paper offers a comprehensive report of the different approaches to infer causal quantities from observational data including identifiability (Pearl's SCM framework) and estimation (potential outcome framework). The main contributions of this survey paper are (1) a guideline to help selecting a suitable fairness notion given a specific real-world scenario, and (2) a ranking of the fairness notions according to Pearl's causation ladder indicating how difficult it is to deploy each notion in practice.


翻译:解决公平问题对于安全地使用机算学习算法支持对人们生活有重大影响的决策至关重要,例如雇用工作、虐待儿童、疾病诊断、贷款等。过去十年中,界定和审查了若干公平概念,例如统计均等和均等差数。但最近的一些公平概念基于因果关系,反映了目前广泛接受的关于必须使用因果关系来适当解决公平问题的观点。本文件审查了一个详尽的基于因果关系的公平概念清单,并研究了这些概念在现实世界情景中的适用性。由于大多数基于因果关系的公平概念是以不可观察的数量(例如干预和反事实)来界定的,因此在实际中部署这些公平概念需要用观察数据来计算或估计这些数量。本文件全面报告了从观察数据(包括识别能力(Pearl's SCM框架))和估计(潜在成果框架)中推算因果关系的不同方法。本调查文件的主要贡献是:(1) 指导准则,帮助根据具体的真实世界情景选择适当的公平概念(例如干预和反事实),因此,实际应用这些概念的实际需要用观察数据来计算或估计这些数量。本文件提供了一份全面的报告,说明了从观察数据中推算出因数量的不同方法,从观察数据中推算出因果关系,包括可辨别(Pearl's s Sure's s s s s s s s s s s slight slist laction sliction sliction liction liction lipplictions lipple) a lictions is lictions is lictions is lictions is lippin

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
14+阅读 · 2020年10月26日
Arxiv
126+阅读 · 2020年9月6日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
22+阅读 · 2019年11月24日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关论文
Arxiv
14+阅读 · 2020年12月17日
Arxiv
14+阅读 · 2020年10月26日
Arxiv
126+阅读 · 2020年9月6日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
22+阅读 · 2019年11月24日
Arxiv
18+阅读 · 2019年1月16日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员