We consider the total (upload plus download) communication cost of two-database symmetric private information retrieval (SPIR) through its relationship to conditional disclosure of secrets (CDS). In SPIR, a user wishes to retrieve a message out of $K$ messages from $N$ non-colluding and replicated databases without learning anything beyond the retrieved message, while no individual database learns the retrieved message index. In CDS, two parties each holding an individual input and sharing a common secret wish to disclose this secret to an external party in an efficient manner if and only if their inputs satisfy a public deterministic function. As a natural extension of CDS, we introduce conditional disclosure of multiple secrets (CDMS) where two parties share multiple i.i.d.~common secrets rather than a single common secret as in CDS. We show that a special configuration of CDMS is equivalent to two-database SPIR. Inspired by this equivalence, we design download cost efficient SPIR schemes using bipartite graph representation of CDS and CDMS, and determine the exact minimum total communication cost of $N=2$ database SPIR for $K=3$ messages.
翻译:我们认为,通过与有条件披露机密(CDS)的关系,双数据库对称私人信息检索(SPIR)的通信总成本(加加下载)为2个数据库的通信总成本(加载加下载),在SPIR中,用户希望从非污染和复制数据库中提取美元信息,而除了检索到的信息之外,没有单独的数据库学习检索到的信息索引。在CDS中,持有个人输入并共享共同秘密愿望的两方,只要其投入符合公共确定性功能,就以有效的方式向外部当事人披露这一秘密。作为CDS的自然延伸,我们引入了多秘密(CDS)的有条件披露,其中两方共享多个i.i.d. - 普通秘密,而不是CDS中的单一共同秘密。我们表明,CDS的特殊配置相当于2个数据库SPIR。受此等值的启发,我们设计了成本高效的SPIR计划,使用CDS和CDS的双面图表示方式,确定美元=2美元SPIR数据库的精确通信总成本。