Population protocols are a class of algorithms for modeling distributed computation in networks of finite-state agents communicating through pairwise interactions. Their suitability for analyzing numerous chemical processes has motivated the adaptation of the original population protocol framework to better model these chemical systems. In this paper, we further the study of two such adaptations in the context of solving approximate majority: persistent-state agents (or catalysts) and spontaneous state changes (or leaks). Based on models considered in recent protocols for populations with persistent-state agents, we assume a population with $n$ catalytic input agents and $m$ worker agents, and the goal of the worker agents is to compute some predicate over the states of the catalytic inputs. We call this model the Catalytic Input (CI) model. For $m = \Theta(n)$, we show that computing the exact majority of the input population with high probability requires at least $\Omega(n^2)$ total interactions, demonstrating a strong separation between the CI model and the standard population protocol model. On the other hand, we show that the simple third-state dynamics of Angluin et al. for approximate majority in the standard model can be naturally adapted to the CI model: we present such a constant-state protocol for the CI model that solves approximate majority in $O(n \log n)$ total steps w.h.p. when the input margin is $\Omega(\sqrt{n \log n})$. We then show the robustness of third-state dynamics protocols to the transient leaks events introduced by Alistarh et al. In both the original and CI models, these protocols successfully compute approximate majority with high probability in the presence of leaks occurring at each step with probability $\beta \leq O\left(\sqrt{n \log n}/n\right)$, exhibiting a resilience to leaks similar to that of Byzantine agents in previous works.
翻译:群体协议是用于模拟通过两两交互进行有限状态代理人网络的分布式计算的算法类别。它们适用于分析许多化学过程的适应性已促使将原始群体协议框架适应于更好地模拟这些化学系统。在本文中,我们进一步研究了这两个适应,并探讨了两个适应在求解近似多数方面的情况:持久状态的代理人(或催化剂)和自发状态变化(或泄漏)。在考虑了最近用于持久状态代理人人群体的模型后,我们假设一个具有n个催化输入代理人和m个工作代理人的人群,其中工作代理人的目标是计算催化输入状态的某个谓词。我们将这个模型称为催化输入(CI)模型。对于m = Θ(n),我们证明准确计算具有高概率的输入人口的多数所需的总相互作用至少需要Ω(n²),从而展示了CI模型和标准人群体协议模型之间的强分离。另一方面,我们发现安格林等人在标准模型中的简单第3状态动态可以自然地适应于CI模型:我们针对CI模型提出了这样一个恒定状态协议,该协议在输入边距为Ω(√(nlogn))时在O(nlogn)总步骤内以高概率解决近似多数问题。然后,我们展示了第三状态动态协议对Alistarh等人引入的瞬态泄漏事件的强大应对能力。在原始模型和CI模型中,这些协议成功地在每个步骤中发生概率为β≤O(√(nlogn)/n)的泄漏时计算近似多数,表现出类似于以前作品中拜占庭代理人的泄漏韧性。