Predictive simulations are essential for applications ranging from weather forecasting to material design. The veracity of these simulations hinges on their capacity to capture the effective system dynamics. Massively parallel simulations predict the systems dynamics by resolving all spatiotemporal scales, often at a cost that prevents experimentation. On the other hand, reduced order models are fast but often limited by the linearization of the system dynamics and the adopted heuristic closures. We propose a novel systematic framework that bridges large scale simulations and reduced order models to extract and forecast adaptively the effective dynamics (AdaLED) of multiscale systems. AdaLED employs an autoencoder to identify reduced-order representations of the system dynamics and an ensemble of probabilistic recurrent neural networks (RNNs) as the latent time-stepper. The framework alternates between the computational solver and the surrogate, accelerating learned dynamics while leaving yet-to-be-learned dynamics regimes to the original solver. AdaLED continuously adapts the surrogate to the new dynamics through online training. The transitions between the surrogate and the computational solver are determined by monitoring the prediction accuracy and uncertainty of the surrogate. The effectiveness of AdaLED is demonstrated on three different systems - a Van der Pol oscillator, a 2D reaction-diffusion equation, and a 2D Navier-Stokes flow past a cylinder for varying Reynolds numbers (400 up to 1200), showcasing its ability to learn effective dynamics online, detect unseen dynamics regimes, and provide net speed-ups. To the best of our knowledge, AdaLED is the first framework that couples a surrogate model with a computational solver to achieve online adaptive learning of effective dynamics. It constitutes a potent tool for applications requiring many expensive simulations.


翻译:预测性模拟对从天气预报到材料设计的应用至关重要。这些模拟的真实性取决于其捕捉到的有效系统动态。大规模并行模拟通过解决所有时空尺度来预测系统动态,但是往往代价高妨碍实验。另一方面,简化模型虽然快,但往往由于系统动态的线性化和采用启发式关闭而受限制。我们提出了一个新的系统框架,以建立大规模模拟和简化模型之间的桥梁,从而自适应地提取和预测多尺度系统的有效动态 (AdaLED)。AdaLED采用自动编码器来识别系统动态的简化表示,采用概率循环神经网络 (RNN) 的整体时间推进器。该框架在计算求解器和替代模型之间交替,通过在线训练不断适应新的动态。替代模型和计算求解器之间的转换是通过监测替代模型的预测准确性和不确定性来确定的。该文展示了AdaLED在三个不同系统上的有效性- Van der Pol 振荡器,二维反应扩散方程和二维在不同雷诺数(从400到1200)下通过柱形物体的Navier-Stokes流动,展示了其在线学习有效动态,检测未见过的动态区域并提供净加速的能力。据我们所知,AdaLED是第一个将替代模型和计算求解器结合在一起实现有效动态的在线自适应学习的框架。它构成了一种强大的工具,适用于需要大量昂贵模拟的应用。

0
下载
关闭预览

相关内容

自适应学习,也被称为自适应教学,是使用计算机算法来协调与学习者的互动,并提供定制学习资源和学习活动来解决每个学习者的独特需求的教育方法。在专业的学习情境,个人可以“试验出”一些训练方式,以确保教学内容的更新。根据学生的学习需要,计算机生成适应其特点的教育材料,包括他们对问题的回答和完成的任务和经验。该技术涵盖了各个研究领域和它们的衍生,包括计算机科学、人工智能、心理测验、教育学、心理学和脑科学。
专知会员服务
95+阅读 · 2021年8月28日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【学科发展报告】自适应动态规划
中国自动化学会
24+阅读 · 2018年9月14日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
7+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月18日
Arxiv
14+阅读 · 2021年3月10日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
VIP会员
相关VIP内容
专知会员服务
95+阅读 · 2021年8月28日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【学科发展报告】自适应动态规划
中国自动化学会
24+阅读 · 2018年9月14日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
7+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员