Multi-perspective cameras with potentially non-overlapping fields of view have become an important exteroceptive sensing modality in a number of applications such as intelligent vehicles, drones, and mixed reality headsets. In this work, we challenge one of the basic assumptions made in these scenarios, which is that the multi-camera rig is rigid. More specifically, we are considering the problem of estimating the relative pose between a static non-rigid rig in different spatial orientations while taking into account the effect of gravity onto the system. The deformable physical connections between each camera and the body center are approximated by a simple cantilever model, and inserted into the generalized epipolar constraint. Our results lead us to the important insight that the latent parameters of the deformation model, meaning the gravity vector in both views, become observable. We present a concise analysis of the observability of all variables based on noise, outliers, and rig rigidity for two different algorithms. The first one is a vision-only alternative, while the second one makes use of additional gravity measurements. To conclude, we demonstrate the ability to sense gravity in a real-world example, and discuss practical implications.
翻译:暂无翻译