Riemannian submanifold optimization with momentum is computationally challenging because ensuring iterates remain on the submanifold often requires solving difficult differential equations. We simplify such optimization algorithms for the submanifold of symmetric positive-definite matrices with the affine invariant metric. We propose a generalized version of the Riemannian normal coordinates which dynamically trivializes the problem into a Euclidean unconstrained problem. We use our approach to explain and simplify existing approaches for structured covariances and develop efficient second-order optimizers for deep learning without explicit matrix inverses.
翻译:黎曼子流形优化具有动量的计算具有挑战性,因为确保迭代保持在子流形上常常需要解决困难的微分方程。我们简化了对称正定矩阵子流形的优化算法,其中使用亏格不变度量。我们提出了黎曼正常坐标的广义版本,动态地将问题简化为无约束的欧几里得问题。我们使用我们的方法来解释和简化现有的结构化协方差方法,并开发无需明确矩阵求逆的有效二阶优化器,用于深度学习。