This work develops non-asymptotic theory for estimation of the long-run variance matrix and its inverse, the so-called precision matrix, for high-dimensional time series under general assumptions on the dependence structure including long-range dependence. The estimation involves shrinkage techniques which are thresholding and penalizing versions of the classical multivariate local Whittle estimator. The results ensure consistent estimation in a double asymptotic regime where the number of component time series is allowed to grow with the sample size as long as the true model parameters are sparse. The key technical result is a concentration inequality of the local Whittle estimator for the long-run variance matrix around the true model parameters. In particular, it handles simultaneously the estimation of the memory parameters which enter the underlying model. Novel algorithms for the considered procedures are proposed, and a simulation study and a data application are also provided.
翻译:这项工作为估计长期差异矩阵及其反向,即所谓的精确矩阵,根据对依赖性结构的一般假设,包括长距离依赖性,为高维时间序列,开发了非无症状理论,用于估计长期差异矩阵及其反向。估计涉及正在对古典多变本地Whittle估计仪的临界值进行和惩罚的缩微技术。结果确保在双重无症状制度中进行一致估计,只要真实模型参数稀少,允许随着样本大小增长组成部分时间序列的数量。关键技术结果是,本地Whittle估计仪对于围绕真实模型参数的长期差异矩阵的集中分布不均。特别是,它同时处理输入基本模型的记忆参数的估计。还提出了审议程序的新算法,并提供了模拟研究和数据应用。