The existing randomized algorithms need an initial estimation of the tubal rank to compute a tensor singular value decomposition. This paper proposes a new randomized fixedprecision algorithm which for a given third-order tensor and a prescribed approximation error bound, automatically finds an optimal tubal rank and the corresponding low tubal rank approximation. The algorithm is based on the random projection technique and equipped with the power iteration method for achieving a better accuracy. We conduct simulations on synthetic and real-world datasets to show the efficiency and performance of the proposed algorithm.
翻译:现有的随机算法需要初步估计管状等级, 才能计算出单值的分解 。 本文提出一种新的随机固定精度算法, 对于特定第三阶高和规定的近似误差, 自动找到最佳管状和相应的低管级近差。 该算法以随机投影技术为基础, 并配有更精确的动力转换方法 。 我们在合成和真实世界的数据集上进行模拟, 以显示拟议算法的效率和性能 。</s>