This article considers linear approximation based on function evaluations in reproducing kernel Hilbert spaces of the Gaussian kernel and a more general class of weighted power series kernels on the interval $[-1, 1]$. We derive almost matching upper and lower bounds on the worst-case error, measured both in the uniform and $L^2([-1,1])$-norm, in these spaces. The results show that if the power series kernel expansion coefficients $\alpha_n^{-1}$ decay at least factorially, their rate of decay controls that of the worst-case error. Specifically, (i) the $n$th minimal error decays as $\alpha_n^{{ -1/2}}$ up to a sub-exponential factor and (ii) for any $n$ sampling points in $[-1, 1]$ there exists a linear algorithm whose error decays as $\alpha_n^{{ -1/2}}$ up to an exponential factor. For the Gaussian kernel the dominating factor in the bounds is $(n!)^{-1/2}$.
翻译:本文章根据复制高斯内核内核内核内核内核的Hilbert空格的功能评价以及一个更一般的加权电源序列内核在 $[1,1] 的间隔值,考虑了线性近似值。我们从最坏的错误中得出几乎匹配的上限和下限,以制服和$[2,[1,1,1]美元-诺尔米衡量。结果显示,如果电源序列内核扩张系数$\alpha_n ⁇ _ ⁇ 1,1美元至少以因数计衰减,它们的衰减率控制着最坏的错误。具体地说,(一) 美元的最低误差以 $\alpha_n\\\\\\\\\\\\1/2美元递减至亚化系数,以及(二) $1,则存在一种线性算法,其错误衰减为$alpha_n__ ⁇ 1/2美元至指数。对于高斯内核内核界内核的误因数是$(n!)\\\\\\\\\}}