When parameters are weakly identified, bounds on the parameters may provide a valuable source of information. Existing weak identification estimation and inference results are unable to combine weak identification with bounds. Within a class of minimum distance models, this paper proposes identification-robust inference that incorporates information from bounds when parameters are weakly identified. The inference is based on limit theory that combines weak identification theory (Andrews and Cheng (2012)) with parameter-on-the-boundary theory (Andrews (1999)). This paper demonstrates the role of the bounds and identification-robust inference in two example factor models. This paper also demonstrates the identification-robust inference in an empirical application: estimating the effects of a randomized intervention on parental investments in children, where parental investments are modeled by a factor model.
翻译:当参数识别薄弱时,参数的界限可能提供一个宝贵的信息来源;现有薄弱的识别估计和推断结果无法将薄弱的识别与界限结合起来;在最低距离模型的类别中,本文件提出在参数识别薄弱时纳入界限信息的身份识别-紫外线推断;根据将薄弱的识别理论(Andrews和Cheng(2012年))与边界参数理论(Andrews(1999年))相结合的限值理论推论;本文件在两个示例要素模型中展示了界限和识别-紫外线推断的作用;本文还展示了经验应用中的识别-紫外线推断:估计随机干预对儿童父母投资的影响,即父母投资以要素模型为模型。