The proliferation of deep learning (DL) has led to the emergence of privacy and security concerns. To address these issues, secure Two-party computation (2PC) has been proposed as a means of enabling privacy-preserving DL computation. However, in practice, 2PC methods often incur high computation and communication overhead, which can impede their use in large-scale systems. To address this challenge, we introduce RRNet, a systematic framework that aims to jointly reduce the overhead of MPC comparison protocols and accelerate computation through hardware acceleration. Our approach integrates the hardware latency of cryptographic building blocks into the DNN loss function, resulting in improved energy efficiency, accuracy, and security guarantees. Furthermore, we propose a cryptographic hardware scheduler and corresponding performance model for Field Programmable Gate Arrays (FPGAs) to further enhance the efficiency of our framework. Experiments show RRNet achieved a much higher ReLU reduction performance than all SOTA works on CIFAR-10 dataset.


翻译:为解决这些问题,建议采用双方安全计算(2PC),作为方便隐私保存DL计算的手段,但在实践中,2PC方法往往产生高计算和通信间接费用,可能妨碍其在大型系统中的使用。为了应对这一挑战,我们引入了RRNet,这是一个系统化框架,目的是共同减少MPC比较协议的间接费用,并通过加速硬件加速计算。我们的方法将加密构件的硬件长度纳入DNN损失功能,从而提高能源效率、准确性和安全保障。此外,我们提议为外地可编程门阵列(FPGAs)提供加密硬件排程器和相应的性能模型,以进一步提高我们框架的效率。实验显示RRNet比CFAR-10数据集的所有SOTA工作都提高了RELU的减少性能。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Top
微信扫码咨询专知VIP会员