We propose an integral representation for the higher-order Fr\'echet derivative of analytic matrix functions $f(A)$ which unifies known results for the first-order Fr\'echet derivative of general analytic matrix functions and for higher-order Fr\'echet derivatives of $A^{-1}$. We highlight two applications of this integral representation: On the one hand, it allows to find the exact value of the level-2 condition number (i.e., the condition number of the condition number) of $f(A)$ for a large class of functions $f$ when $A$ is Hermitian. On the other hand, it also allows to use numerical quadrature methods to approximate higher-order Fr\'echet derivatives. We demonstrate that in certain situations -- in particular when the derivative order $k$ is moderate and the direction terms in the derivative have low-rank structure -- the resulting algorithm can outperform established methods from the literature by a large margin.
翻译:我们建议对分析矩阵函数的较高等级Fr\'echet衍生物进行整体代表,以美元(A)为单位,统一一般分析矩阵函数的第一等级Fr\'echet衍生物和更高等级Fr\'echet衍生物的已知结果。我们强调这一整体代表性的两种应用:一方面,它允许为一大类功能的一等Fr\'echet衍生物找到2级条件号(即条件号的条件号)的准确价值(即A),美元是Hermitian美元。另一方面,它允许使用数字等量法方法来接近较高等级Fr\'echet衍生物。我们证明,在某些情况下 -- -- 特别是当衍生物的美元为中值,衍生物的方向值为低层次结构时 -- -- 由此产生的算法可以大大超出文献中设定的方法。