In this paper, we propose Wasserstein Isometric Mapping (Wassmap), a parameter-free nonlinear dimensionality reduction technique that provides solutions to some drawbacks in existing global nonlinear dimensionality reduction algorithms in imaging applications. Wassmap represents images via probability measures in Wasserstein space, then uses pairwise quadratic Wasserstein distances between the associated measures to produce a low-dimensional, approximately isometric embedding. We show that the algorithm is able to exactly recover parameters of some image manifolds including those generated by translations or dilations of a fixed generating measure. Additionally, we show that a discrete version of the algorithm retrieves parameters from manifolds generated from discrete measures by providing a theoretical bridge to transfer recovery results from functional data to discrete data. Testing of the proposed algorithms on various image data manifolds show that Wassmap yields good embeddings compared with other global techniques.
翻译:在本文中,我们提出瓦瑟斯坦测量图(Wassmap),这是一种无参数的非线性维度减少技术,它为现有全球非线性减少算法在成像应用方面的某些缺点提供了解决办法。瓦斯马普代表了瓦瑟斯坦空间中通过概率测量得出的图像,然后使用相关测量之间的对称四边瓦瑟斯坦距离来产生一个低维,大约是等离子嵌入。我们表明算法能够准确恢复某些图像元的参数,包括固定生成措施的翻译或放大所产生的参数。此外,我们表明,一个离散的算法版本通过提供理论桥梁,将功能数据恢复结果转换为离散数据,从离散计量生成的元数中提取参数。对各种图像数据元数的拟议算法的测试表明,瓦斯马特与其他全球技术相比,它产生良好的嵌入率。