A tiling of a finite vector space $R$ is the pair $(U,V)$ of its subsets such that $U+V=R$ and $|U|\cdot |V|=|R|$. A tiling is connected to a perfect codes if one of the sets, say $U$, is projective, i.e., the union of one-dimensional subspaces of $R$. A tiling $(U,V)$ is full-rank if the affine span of each of $U$, $V$ is $R$. For non-binary vector spaces of dimension at least $6$ (at least $10$), we construct full-rank tilings $(U,V)$ with projective $U$ (both $U$ and $V$, respectively). In particular, this construction gives a full-rank ternary $1$-perfect code of length $13$, solving a known problem. We discuss the treatment of tilings with projective components as factorizations of projective spaces.


翻译:限定矢量空间的一对(美元、五)美元是其子数的一对美元(美元)、一对美元(美元)、一美元(美元)、一对美元(美元)、一对美元(美元)、一对美元(美元)、一对美元(美元)、一对美元(美元)、一对有限矢量空间的一对(美元)、一对(美元)、一对(美元)、一对(美元)、一对(美元)、一对(美元)、一对(美元)、一对(美元)、一对(美元)、一对(美元)、一对(美元)、一对(美元)、一对(美元)、一对(美元)、一对(美元)、一对(美元)、一对(美元)、一对(美元)、一对(美元)、一对一对(美元)是全部。对于非二对二体载体载体载载体空间的一对六美元(至少(美元)、一美元(美元)、一对一对一对一对一对(美元(美元)、一对一对(美元)、一对一对一对一对一对一对一对(美元(美元)、一对),一对一对,一对,一对一对,一对,对于(美元),对于)是(美元(美元)、一对一对,对于(美元(美元),对于)是是是(美元)是全部)是全部(美元(美元)。对于。对于等(美元(美元)是指(美元)是指(美元),对于等(美元),对于等(美元)是,对于)是(美元)。对于(美元(美元)是指(美元)是指(美元)是指(美元)。对于)是(美元)。对于,对于非)是指,对于非一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一对一

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月22日
Arxiv
0+阅读 · 2022年8月19日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员