Recently A. Neri, P. Santonastaso and F. Zullo extended a family of $2$-dimensional $\mathbb{F}_{q^{2t}}$-linear MRD codes found by G. Longobardi, G. Marino, R. Trombetti and Y. Zhou. Also, for $t \geq 5$ they determined equivalence classes of the elements in this new family, and provided the exact number of inequivalent codes in it. In this article we complete the study of the equivalence issue removing the restriction $t \geq 5$. Moreover, we prove that in the case when $t=4$, the linear sets of the projective line $\mathrm{PG}(1,q^{8})$ ensuing from codes in the relevant family, are not equivalent to any one known so far.
翻译:最近,A. Neri、P. Santonastatoso和F. Zullo将G. Longobardi、G. Marino、R. Trombetti和Y. Zhou所发现的2美元维基元MRD代码的家庭扩大为2美元 $mathbb{F ⁇ q ⁇ 2t ⁇ $-线性MRD代码。另外,对于$t\geq 5美元,他们确定了这个新家庭各元素的等值类别,并提供了其中等值代码的确切数量。在本条中,我们完成了对等问题的研究,取消了对等限制$t\geq 5美元。此外,我们证明,在美元=4美元的情况下,从相关家庭的代码中产生的投射线($\mathrm{PG}(1,q ⁇ 8})并不等同于迄今为止已知的任何数字。