In this work, we study two types of constraints on two-dimensional binary arrays. In particular, given $p,\epsilon>0$, we study (i) The $p$-bounded constraint: a binary vector of size $m$ is said to be $p$-bounded if its weight is at most $pm$, and (ii) The $\epsilon$-balanced constraint: a binary vector of size $m$ is said to be $\epsilon$-balanced if its weight is within $[(0.5-\epsilon)*m,(0.5+\epsilon)*m]$. Such constraints are crucial in several data storage systems, those regard the information data as two-dimensional (2D) instead of one-dimensional (1D), such as the crossbar resistive memory arrays and the holographic data storage. In this work, efficient encoding/decoding algorithms are presented for binary arrays so that the weight constraint (either $p$-bounded constraint or $\epsilon$-balanced constraint) is enforced over every row and every column, regarded as 2D row-column (RC) constrained codes; or over every subarray, regarded as 2D subarray constrained codes. While low-complexity designs have been proposed in the literature, mostly focusing on 2D RC constrained codes where $p = 1/2$ and $\epsilon = 0$, this work provides efficient coding methods that work for both 2D RC constrained codes and 2D subarray constrained codes, and more importantly, the methods are applicable for arbitrary values of $p$ and $\epsilon$. Furthermore, for certain values of $p$ and $\epsilon$, we show that, for sufficiently large array size, there exists linear-time encoding/decoding algorithm that incurs at most one redundant bit.


翻译:在这项工作中,我们研究了两种对二维二进制阵列的限制。特别是,考虑到$p,\ epsilon>0美元,我们研究:(一) 美元受限制的限制:如果其重量最高为$pm美元,那么规模为$1的二进制矢量就被认为受美元约束,以及(二) 美元平衡的限制:如果其重量在$[(0.5-epsilon)*m,(0.5-epsilon>0]美元之内,我们研究(一) 美元受限制的限制:如果其重量在美元($(0.5-epsilon)m,那么,如果其重量在美元(0.00-epsilon)%,那么,如果其重量在美元(0.0-epsilon)%m 范围内,那么这种限制对于数据数据为二维(2D)而不是一维(1D)的双双维的双维矢量矢量矢量矢量矢量值(2x),那么,对于一个硬质(deal-ral-ral-ral-rent $$美元)的硬值(de-ral-ral-ral-ral-coal-code) $2 d),对于每一列的硬值(2xxxxxxxxxx) =2 d),这被视为2x2xxx2x2x2x2x的硬度和每2x2x2x的硬度(在2x2x的硬度为2x,这为2x的硬值(在2x2x的硬度(在2xxxx2x2x2x),这下显示为2xxxxxx),这下显示为2x的硬的硬的硬的硬的硬的硬的硬的硬度为2x2x2x2x2x),这下显示为2xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx2x),这下显示为1次的硬值和每一或每一或每列的硬值为1次的硬值为0.2xxxx。

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月5日
Arxiv
0+阅读 · 2022年10月1日
VIP会员
相关VIP内容
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员