We consider the problem of maximizing a homogeneous polynomial on the unit sphere and its hierarchy of Sum-of-Squares (SOS) relaxations. Exploiting the polynomial kernel technique, we obtain a quadratic improvement of the known convergence rate by Reznick and Doherty & Wehner. Specifically, we show that the rate of convergence is no worse than $O(d^2/\ell^2)$ in the regime $\ell \geq \Omega(d)$ where $\ell$ is the level of the hierarchy and $d$ the dimension, solving a problem left open in the recent paper by de Klerk & Laurent (arXiv:1904.08828). Importantly, our analysis also works for matrix-valued polynomials on the sphere which has applications in quantum information for the Best Separable State problem. By exploiting the duality relation between sums of squares and the DPS hierarchy in quantum information theory, we show that our result generalizes to nonquadratic polynomials the convergence rates of Navascu\'es, Owari & Plenio.
翻译:我们考虑了在单位范围内最大限度地实现同质多元度的问题,以及单位范围及其Sum-squares(SOS)的等级问题。利用多元内核技术,我们得到了Reznick和Doherty & Wehner的已知趋同率的二次改进。具体地说,我们表明,在单位领域最大程度的趋同率不低于$O(d ⁇ 2/\ell ⁇ 2)$(美元)的制度中,在单位信息理论中,美元是等级水平,美元是维度,而美元是维度,解决了De Klerk & Laurent最近论文(arXiv:1904.088828)中遗留的一个问题。我们的分析还针对在量量信息中应用了量信息的基估聚度数据的领域进行了工作。我们利用了平方的数值和量量信息理论中DPS等级之间的双重关系,我们显示了我们的结果将纳瓦斯库斯的趋同率概括为非干旱性多元性聚质。