The Natural Language Inference (NLI) task often requires reasoning over multiple steps to reach the conclusion. While the necessity of generating such intermediate steps (instead of a summary explanation) has gained popular support, it is unclear how to generate such steps without complete end-to-end supervision and how such generated steps can be further utilized. In this work, we train a sequence-to-sequence model to generate only the next step given an NLI premise and hypothesis pair (and previous steps); then enhance it with external knowledge and symbolic search to generate intermediate steps with only next-step supervision. We show the correctness of such generated steps through automated and human verification. Furthermore, we show that such generated steps can help improve end-to-end NLI task performance using simple data augmentation strategies, across multiple public NLI datasets.
翻译:自然语言推断(NLI)任务往往要求就达成结论的多个步骤进行推理。虽然产生这种中间步骤(而不是简要解释)的必要性得到了民众的支持,但尚不清楚如何在没有完整的端到端监督的情况下产生这种步骤,以及如何进一步利用这种产生的步骤。在这项工作中,我们训练一个顺序到顺序的模式,以便仅产生符合国家语言推断前提和假设假设的下一个步骤(以及以前的步骤);然后用外部知识和象征性的搜索来增强它,以便产生中间步骤,只有下一步的监督。我们通过自动化和人文核查来显示这些步骤的正确性。此外,我们表明,这些产生的步骤能够帮助利用简单的数据增强战略,在多个公共的NLI数据集中改进端到端任务的业绩。