Prompt learning with immensely large Casual Language Models (CLMs) has been shown promising for attribute-controllable text generation (CTG). However, vanilla prompt tuning tends to imitate training corpus characteristics beyond the control attributes, resulting in a poor generalization ability. Moreover, it is less able to capture the relationship between different attributes, further limiting the control performance. In this paper, we propose a new CTG approach, namely DisCup, which incorporates the attribute knowledge of discriminator to optimize the control-prompts, steering a frozen CLM to produce attribute-specific texts. Specifically, the frozen CLM model, capable of producing multitudinous texts, is first used to generate the next-token candidates based on the context, so as to ensure the diversity of tokens to be predicted. Then, we leverage an attribute-discriminator to select desired/undesired tokens from those candidates, providing the inter-attribute knowledge. Finally, we bridge the above two traits by an unlikelihood objective for prompt-tuning. Extensive experimental results show that DisCup can achieve a new state-of-the-art control performance while maintaining an efficient and high-quality text generation, only relying on around 10 virtual tokens.
翻译:以庞大的 " 伤亡语言模型(CLMS) " 迅速学习,对可属性控制文本的生成很有希望。然而,香草快速调试往往模仿超出控制属性的训练品特性,造成一般化能力差。此外,它不太能够捕捉不同属性之间的关系,进一步限制了控制性能。在本文件中,我们提议一种新的CTG方法,即DisCUP,它包含歧视者的属性知识,以优化控制-程序,引导冷冻的CLM 生成特定属性文本。具体地说,能够制作多语文本的冻结的CLM 模型,首先用于产生基于上下文的下一个点名候选人,以确保可以预测不同属性的多样性。然后,我们利用一个属性差异者从这些候选人中选择想要的/缺失的标物,提供归属间知识。最后,我们通过一个不相容的目标将上述两个特征连接起来,以迅速调整特定的文本。广泛的实验结果显示,在10个高质量的版本上,但只能实现新的州级和虚拟版本。