We propose and explore a new, general-purpose method for the implicit time integration of elastica. Key to our approach is the use of a mixed variational principle. In turn its finite element discretization leads to an efficient alternating projections solver with a superset of the desirable properties of many previous fast solution strategies. This framework fits a range of elastic constitutive models and remains stable across a wide span of timestep sizes, material parameters (including problems that are quasi-static and approximately rigid). It is efficient to evaluate and easily applicable to volume, surface, and rods models. We demonstrate the efficacy of our approach on a number of simulated examples across all three codomains.
翻译:我们建议并探索一种新的通用方法,用于静态的隐含时间整合。我们方法的关键是使用混合的变异原则。反过来,它的有限元素分解导致一个高效的交替投影解答器,其前许多快速解决方案战略的预期特性的超集。这个框架符合一系列弹性构件模型,并在广泛的时间段大小、物质参数(包括准静态和近乎僵硬的问题)中保持稳定。对数量、地表和棒模型进行评估和易于适用是有效的。我们展示了我们在所有三个共域的一些模拟实例上的方法的有效性。