A good understanding of the heat transfer in fused filament fabrication is crucial for an accurate stress prediction and subsequently for repetitive, high quality printing. This work focuses on two challenges that have been presented when it comes to the accuracy and efficiency in simulating the heat transfer in the fused filament fabrication process. With the prospect of choosing correct thermal boundary conditions expressing the natural convection between printed material and its environment, values for the convective heat transfer coefficient and ambient temperature were calibrated through numerical data fitting of experimental thermal measurements. Furthermore, modeling simplifications were proposed for an efficient numerical discretization of infill structures. Samples were printed with varying infill characteristics, such as varying air void size, infill densities and infill patterns. Thermal measurements were performed to investigate the role of these parameters on the heat transfer and based on these observations, possible modeling simplifications were studied in the numerical simulations.
翻译:暂无翻译