We leverage representation learning and the inductive bias in neural-net-based Standard Model jet classification tasks, to detect non-QCD signal jets. In establishing the framework for classification-based anomaly detection in jet physics, we demonstrate that with a \emph{well-calibrated} and \emph{powerful enough feature extractor}, a well-trained \emph{mass-decorrelated} supervised Standard Model neural jet classifier can serve as a strong generic anti-QCD jet tagger for effectively reducing the QCD background. Imposing \emph{data-augmented} mass-invariance (decoupling the dominant factor) not only facilitates background estimation, but also induces more substructure-aware representation learning. We are able to reach excellent tagging efficiencies for all the test signals considered. In the best case, we reach a background rejection rate of 51 and a significance improvement factor of 3.6 at 50 \% signal acceptance, with jet mass decorrelated. This study indicates that supervised Standard Model jet classifiers have great potential in general new physics searches.
翻译:我们利用基于神经网络的标准模型喷气式喷气器分类任务的代表性学习和感应偏差来检测非QCD信号喷气机。在建立基于分类的喷气物理异常检测框架时,我们证明,通过对喷气物理中基于分类的异常检测框架,我们证明,通过对功能提取器的检测,我们能够对所考虑的所有测试信号达到良好的标注效率。在最好的情况下,我们达到了51度的背景拒绝率和在50度信号接受度达到3.6度的重大改进系数,与喷气质量有关。这项研究表明,受监督的标准模型喷气分类在一般的新的物理学搜索中具有巨大的潜力。