In this paper, we propose a study of the cross-domain few-shot object detection (CD-FSOD) benchmark, consisting of image data from a diverse data domain. On the proposed benchmark, we evaluate state-of-art FSOD approaches, including meta-learning FSOD approaches and fine-tuning FSOD approaches. The results show that these methods tend to fall, and even underperform the naive fine-tuning model. We analyze the reasons for their failure and introduce a strong baseline that uses a mutually-beneficial manner to alleviate the overfitting problem. Our approach is remarkably superior to existing approaches by significant margins (2.0\% on average) on the proposed benchmark. Our code is available at \url{https://github.com/FSOD/CD-FSOD}.
翻译:在本文件中,我们提议对跨域微小物体探测(CD-FSOD)基准进行研究,其中包括来自不同数据领域的图像数据。关于拟议基准,我们评估最新的FSOD方法,包括元学习FSOD方法和微调FSOD方法。结果显示,这些方法往往会下降,甚至低于天真的微调模式。我们分析其失败的原因,并引入一个强有力的基准,利用互利方式缓解过分适应问题。我们的方法在拟议基准上比现有方法高出很多(平均为2.0 ⁇ )。我们的代码可在以下网址查阅:<url{https://github.com/FSOD/CD-FSOD}。