Big-data-based artificial intelligence (AI) supports profound evolution in almost all of science and technology. However, modeling and forecasting multi-physical systems remain a challenge due to unavoidable data scarcity and noise. Improving the generalization ability of neural networks by "teaching" domain knowledge and developing a new generation of models combined with the physical laws have become promising areas of machine learning research. Different from "deep" fully-connected neural networks embedded with physical information (PINN), a novel shallow framework named physics-informed convolutional network (PICN) is recommended from a CNN perspective, in which the physical field is generated by a deconvolution layer and a single convolution layer. The difference fields forming the physical operator are constructed using the pre-trained shallow convolution layer. An efficient linear interpolation network calculates the loss function involving boundary conditions and the physical constraints in irregular geometry domains. The effectiveness of the current development is illustrated through some numerical cases involving the solving (and estimation) of nonlinear physical operator equations and recovering physical information from noisy observations. Its potential advantage in approximating physical fields with multi-frequency components indicates that PICN may become an alternative neural network solver in physics-informed machine learning.
翻译:以大数据为基础的人工智能(AI)支持几乎所有科学技术的深刻演变。然而,建模和预测多物理系统由于不可避免的数据稀缺和噪音,仍然是一项挑战。通过“教学”领域知识和开发新一代模型与物理法则相结合,提高神经网络的普及能力,已成为有希望的机械学习研究领域。不同于以物理信息(PINN)嵌入的“深”完全连通的神经网络(PINN),从CNN的角度建议建立一个名为物理知情飞行网络(PICN)的新颖的浅质框架(PICN),这个框架的物理场是由分流层和单一相变层生成的。形成物理操作器的不同领域是利用预先训练的浅相相相相相相相层建造的。高效的线性相互交织网络计算了涉及边界条件和不规则的物理制约的损失功能。当前发展的有效性体现在一些数字案例中,这些案例涉及解决(和估计)非线性物理操作者方程式方程式等和从噪音观测中恢复物理信息。它对于物理场的物理领域的潜在优势在于用多频谱物理学学习系统进行对物理学的替代网络。