Existing machines are functionally specific tools that were made for easy prediction and control. Tomorrow's machines may be closer to biological systems in their mutability, resilience, and autonomy. But first they must be capable of learning, and retaining, new information without repeated exposure to it. Past efforts to engineer such systems have sought to build or regulate artificial neural networks using task-specific modules with constrained circumstances of application. This has not yet enabled continual learning over long sequences of previously unseen data without corrupting existing knowledge: a problem known as catastrophic forgetting. In this paper, we introduce a system that can learn sequentially over previously unseen datasets (ImageNet, CIFAR-100) with little forgetting over time. This is accomplished by regulating the activity of weights in a convolutional neural network on the basis of inputs using top-down modulation generated by a second feed-forward neural network. We find that our method learns continually under domain transfer with sparse bursts of activity in weights that are recycled across tasks, rather than by maintaining task-specific modules. Sparse synaptic bursting is found to balance enhanced and diminished activity in a way that facilitates adaptation to new inputs without corrupting previously acquired functions. This behavior emerges during a prior meta-learning phase in which regulated synapses are selectively disinhibited, or grown, from an initial state of uniform suppression.
翻译:现有机器是功能上的具体工具, 用于简单的预测和控制。 明天的机器可能更接近生物系统, 其变异性、 复原力和自主性。 但首先它们必须能够学习和保存新信息, 而无需反复接触它。 过去设计这些系统的努力试图利用应用环境有限的特定任务模块来建立或管理人工神经网络。 这尚无法在不腐蚀现有知识的情况下, 持续学习以往未知数据的长期序列: 一个被称为灾难性的遗忘问题 。 在本文中, 我们引入了一个系统, 该系统可以沿序学习先前未知的数据集( ImageNet, CIFAR- 100), 并且很少忘记时间 。 完成这个系统的办法是, 在使用由第二个进料向神经网络生成的自上至下调制调制输入材料的基础上, 来调节进量网络中的重量活动活动。 我们发现, 我们的方法不断在域内学习, 其重重重的零星活动在回收, 而不是通过维持任务特定的模块。 分解式的断裂式断裂式断裂式循环, 在初始阶段, 正在逐步调整新的进化, 逐渐改变新的进化, 。